boolmfilter
假设Bloom Filter使用一个m比特的数组来保存信息,初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0,即Bloom-Filter整个数组的元素都设置为0

如果我们现在有一个集合S={x1, x2,…,xn},包含n个元素。现在我们需要k个hash函数对n个元素进行计算并映射到我们的位数组中
当我们往Bloom Filter中增加任意一个元素x时候,我们使用k个哈希函数得到k个哈希值,然后将数组中对应的比特位设置为1。即第i个哈希函数映射的位置hashi(x)就会被置为1(1≤i≤k)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位,即第二个“1“处)。

现在我们就可以判断一个元素是否在这个集合中了,比如判断y是否在这个集合中,我们只需要对y使用k个哈希函数得到k个哈希值,如果所有hashi(y)的位置都是1(1≤i≤k),即k个位置都被设置为1了,那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素(因为y1有一处指向了“0”位)。y2或者属于这个集合。或者刚好是一个false positive(假阳性)。

某个成员 确实 属于集合,那么BF一定能够给出正确的判断.因为在将该成员映射到位数组空间过程中,对应位置都已经被设置为1,而整个过程中不存在将1改为0的行为,所以一定不会 漏判
误判包括集合的大小,哈希函数的个数k和位数组大小m,
改进的BF,BF的一个问题是 集合成员只能 增加,不能删除,因为无法 把1 变成0,因为原来只能判断 有和没有,
那 可以位数 存 10 之类的, 可以 进行减法操作
lock实现
1、设置AbstractQueuedSynchronizer的state为1
2、设置AbstractOwnableSynchronizer的thread为当前线程
线程A正在执行中,status = 1。
线程B尝试利用CAS去判断state是不是0,是0就设置为1,当然这一步操作肯定是失败的,因为线程A已经将state设置成了1,所以此时肯定是失败的。
失败了之后进入FIFO等待队列。等待重新尝试
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
ConcurrentHashMap
http://www.jasongj.com/java/concurrenthashmap/
1.7
Segment继承自ReentrantLock,所以我们可以很方便的对每一个Segment上锁。
对于读操作,获取Key所在的Segment时,需要保证可见性(请参考如何保证多线程条件下的可见性)。具体实现上可以使用volatile关键字,也可使用锁。但使用锁开销太大,而使用volatile时每次写操作都会让所有CPU内缓存无效,也有一定开销。ConcurrentHashMap使用如下方法保证可见性,取得最新的Segment。
对于写操作,并不要求同时获取所有Segment的锁,因为那样相当于锁住了整个Map。它会先获取该Key-Value对所在的Segment的锁,获取成功后就可以像操作一个普通的HashMap一样操作该Segment,并保证该Segment的安全性。 同时由于其它Segment的锁并未被获取,因此理论上可支持concurrencyLevel(等于Segment的个数)个线程安全的并发读写。
获取锁时,并不直接使用lock来获取,因为该方法获取锁失败时会挂起(参考可重入锁)。事实上,它使用了自旋锁,如果tryLock获取锁失败,说明锁被其它线程占用,此时通过循环再次以tryLock的方式申请锁。如果在循环过程中该Key所对应的链表头被修改,则重置retry次数。如果retry次数超过一定值,则使用lock方法申请锁。
这里使用自旋锁是因为自旋锁的效率比较高,但是它消耗CPU资源比较多,因此在自旋次数超过阈值时切换为互斥锁。
1.8
Java 8的ConcurrentHashMap同样是通过Key的哈希值与数组长度取模确定该Key在数组中的索引。同样为了避免不太好的Key的hashCode设计,它通过如下方法计算得到Key的最终哈希值。不同的是,Java 8的ConcurrentHashMap作者认为引入红黑树后,即使哈希冲突比较严重,寻址效率也足够高,所以作者并未在哈希值的计算上做过多设计,只是将Key的hashCode值与其高16位作异或并保证最高位为0(从而保证最终结果为正整数)。
同步方式
对于put操作,如果Key对应的数组元素为null,则通过CAS操作将其设置为当前值。如果Key对应的数组元素(也即链表表头或者树的根元素)不为null,则对该元素使用synchronized关键字申请锁,然后进行操作。如果该put操作使得当前链表长度超过一定阈值,则将该链表转换为树,从而提高寻址效率。
对于读操作,由于数组被volatile关键字修饰,因此不用担心数组的可见性问题。同时每个元素是一个Node实例(Java 7中每个元素是一个HashEntry),它的Key值和hash值都由final修饰,不可变更,无须关心它们被修改后的可见性问题。而其Value及对下一个元素的引用由volatile修饰,可见性也有保障。

clickhouse
文档信息
- 本文作者:Jessica
- 本文链接:https://jessica0530.github.io/2020/10/23/Java%E9%9D%A2%E8%AF%95%E8%A1%A5%E5%85%85/
- 版权声明:自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)
